OpenMRH: a Modular Robotic Hand Generator Plugin for OpenRAVE

Filippo Sanfilippo! and Kristin Ytterstad Pettersen’

Abstract— In this work, the open-source plugin OpenMRH is
presented for the Open Robotics Automation Virtual Environment
(OpenRAVE), a simulation environment for testing, developing
and deploying motion planning algorithms. The proposed
plugin allows for a fast and automated generation of different
modular hand models. OpenMRH combines virtual-prototyping
and modular concepts. Each modular model is generated by
applying a dynamically generated code, which is consistent with
the standard syntax expected by OpenRAVE for the simulated
models. In this way, once the desired model is generated, an
instance of OpenRAVE can be launched and the model can be
visualised. Alternatively, the modular models can be generated
from a user-defined input specified via a graphical user interface
(GUI). The generated models can be used for testing, developing
and deploying grasp or motion planning algorithms. Two case
studies are considered to validate the efficiency of the proposed
model generator. In the first case study, a modular robotic hand
model is generated with OpenMRH by using user-defined input
parameters. In the second case study, another hand model is
generated with OpenMRH by using algorithmic defined input
parameters.

I. INTRODUCTION

The human hand is capable of grasping an astounding
variety of objects of different shapes, textures, weights and
spatial orientations. One of the most ambitious steps in get-
ting a robot to fully mimic the movement of the human hand
consists of building a robotic hand with sufficient dexterity.
However, the development of such a hand is challenging
because a high number of degrees of freedom (DOF) is
required to be controlled.

A promising solution for getting such flexibility consists
of using a modular approach [1]. Modular grasping makes
it possible to use only the necessary number of DOF to
accomplish a specific task. As such, a trade-off between
simple grippers and more complex human-like manipulators
can be reached. Modularity offers robustness to hardware
failures considering that the robot parts are interchangeable.
The production cost can also be considerably reduced and
the weight of the manipulator can be minimised. Moreover,
modularity is advantageous in terms of versatility since the
robotic hand can be disassembled and reassembled to form
new morphologies that are suitable for new tasks.

To fully exploit the concept of modular grasping, an itera-
tive algorithm for a bio-inspired design of modular grippers
was introduced in [2]. The proposed method is a simulation

IFilippo Sanfilippo is with the Dept. of Maritime Technology and
Operations, Aalesund University College, Postboks 1517, 6025 Aalesund,
Norway. fisa@hials.no

2Kristin Ytterstad Pettersen is with the Centre for Autonomous Ma-
rine Operations and Systems, Dept. of Engineering Cybernetics, Norwe-
gian University of Science and Technology, 7491 Trondheim, Norway.
kristin.y.pettersen@itk.ntnu.no

Model Generator
| (OpenRAVE =
plug-in)

Iterative Design
Algorithm

OpenRAVE

Fig. 1: The idea of realising a plugin for OpenRAVE that
allows for a fast and automated generation of different
modular hand models.

based approach that allows for determining effective modular
hand configurations to get efficient grasps of given objects.
An iterative procedure is adopted: starting from the simplest
modular structure, different configurations are tested, with a
greater number of DOF at each iteration. The goal of this
procedure is to obtain a modular configuration that reaches
a predetermined performance in terms of grasp quality
using the least amount of modules possible. The resulting
modular hand configurations are able to perform effective
grasps that a human would consider stable. Nonetheless, in
this preliminary work, all the different configurations were
manually built with the Open Robotics Automation Virtual
Environment (OpenRAVE) [3], a simulation environment that
allows for testing, developing and deploying motion planning
algorithms. Even though the effectiveness of the proposed
design algorithm has been proved, the manual process of
generating different modular configurations was a tedious
and time-consuming task, which required a significant ef-
fort for the designer. This challenge also affects most of
the existing simulation environments. Even though several
simulation environments are openly available to researchers,
the manipulator models must be manually built.

To overcome this challenge, OpenMRH — a model gen-
erator for modular robotic hands — is presented in this
article as an OpenRAVE plugin. This plugin may work as
middleware between the previously proposed iterative design
algorithm and the OpenRAVE simulation environment, as
shown in Fig. 1. Alternatively, the modular models can be
generated from a user-defined input from a graphical user
interface (GUI). This idea makes it possible to combine
the virtual-prototyping approach with the modular concept.
Each modular model can be automatically built by apply-
ing a dynamic code-generation process. The self-generated
models are consistent with the standard guidelines expected
by OpenRAVE for simulated robots. In this fashion, once
the model is generated, an instance of OpenRAVE can be
initialised and the model can be visualised within the se-
lected simulation environment. The generated models can be
used for testing, developing and deploying grasp or motion

planning algorithms. OpenMRH is an open-source project
and it is available online at https://github.com/
aauc-mechlab/openMRH. To validate the efficiency of
the proposed model generator, related simulations are carried
out in this paper.

The paper is organised as follows. A review of the related
research work is given in Sec. II. In Sec. III, we describe a
generalised modular model. Based on this model, we sum-
marise the previously presented iterative design algorithm
emphasising the need for an automated model generation
process. Following this, we focus on the description of
the proposed model generator plugin. Two case studies are
described in Sec. IV. In the first case study, a modular
robotic hand model is generated with OpenMRH by using
user-defined input parameters. In the second case study,
another hand model is generated with OpenMRH by using
algorithmic defined input parameters. In Sec. V, conclusions
and future works are outlined.

II. RELATED RESEARCH WORK

Previous attempts to deal with automatic model generation
for modular robots are very limited in literature. From a
design point of view, a simulation based prototyping can be
beneficial when developing robots with different configura-
tions. Development time can be significantly reduced, the
system properties can be analysed and the corresponding
performance can be assessed. Therefore, simulation and
virtual prototyping are necessary steps to validate the design
before making a physical prototype.

Different robotic simulation environments have been pre-
sented in the last few years. For instance, OpenRAVE is
a common tool and is adopted by several researchers in
this field. OpenRAVE provides a flexible developing en-
vironment with a seamless integration of 3-D simulation,
visualisation, planning, scripting and control. The plugin-
based architecture of OpenRAVE allows researchers to easily
write custom made controllers or add new control features.
Any planning algorithm, robot controller or sensing sub-
system can be distributed and dynamically loaded at run-
time thanks to OpenRAVE plugins. This frees developers
from struggling with enormous code-bases. OpenRAVE users
can focus their attention on the development, planning and
scripting aspects of a problem without having to explicitly
manage the intricacies of the underlying architecture such as
kinematics and dynamics details, collision detection, world
updates and robot control. The OpenRAVE architecture has a
flexible interface that is possible to implement in conjunction
with other popular robotics packages such as ROS [4]. This
flexibility is possible due to the priority OpenRAVE gives to
autonomous motion planning and high-level scripting rather
than low-level control and message protocols. OpenRAVE
also supports a robust network scripting environment, thereby
simplifying robot control and modification of execution
flow at run-time. Furthermore, the use of open component
architecture such as OpenRAVE gives the robotics research
community the freedom to easily share and compare algo-
rithms. However, OpenRAVE does not provide any tools for

an automated generation of robotic models. The onus is put
on the designer, who must manually define the robot structure
according to the guidelines expected by OpenRAVE. The
manual design process may require an extensive effort for the
designer in terms of time. This can be a significant disadvan-
tage when considering the use of rapid virtual prototyping
methods.

To tackle this problem, a flexible graphical tool for gener-
ating modular configurations, which can be simulated with
OpenRAVE, was presented in [5]. The proposed tool consists
of a GUI, which is based on the OpenMR plugin [6], an
OpenRAVE modular robots extension that allows for simu-
lating the locomotion of modular robots. The proposed GUI
allows for easily defining the desired configuration of the
robot to be simulated. This enables the user to get simulation
results very quickly because only some basic knowledge
about the application space of modular robotics is needed.
Therefore, this interface is suitable for both educational and
research purposes. However, the presented GUI is restricted
to snake-like modular robots and it only allows locomotion
simulation purposes.

To the best of our knowledge, a model generator tool
for robotic modular hands or human like manipulators has
not been released. The main contribution of this paper is to
propose such a design tool.

ITII. OpenMRH

In this section, a generalised modular model for modular
robotic hands is first considered. Based on this model, we
then summarise our previously presented design algorithm
for the sake of clarity. Finally, a detailed overview of
OpenMRH is provided.

A. A Generalised Modular Model for Modular Robotic
Hands

The same generalised modular model as proposed in [2]
is adopted in this work. The concept is a modular device
whose structure can be adapted to the object to grasp or to
the task to be executed. To this end, the simplest mechanical
structure was chosen, with the minimum number of actuators,
simplest set of sensors, etc. These guidelines brought forth
the Y1 modular robot [7]. This low-cost, versatile and robust
robot, which has one DOF and fast-prototyping features,
was chosen as the fundamental element of the proposed
modular device. Docking blocks allow for easy and flexible
connection or disconnection. A standard servo motor actuates
each joint and each module has the same assembly selection,
making the modular structure as simple as possible. As
shown in Fig. 1, the generalised modular model consists of
one or more kinematic chains of modules fixed to a base,
in which each module is a chain link. When compared to
a human hand, each chain represents a finger, each module
represents a phalanx and the base represents the palm. The
base of the model is also modular. Each finger is attached
to its own base plate module, which can be connected to the
other base plates with the existing slots and hooks, forming a
unique base. Three possible base configurations are defined:

linear base when there is no finger opposition, circular base
when equidistant fingers are set in a circular configuration
and opposable-fingers base when one or more fingers oppose
the others. Although these modular bases do not cover all
possible gripper configurations, they do describe the most
significant grasp models that mimic human hand taxonomy

[8].
B. Modular Grasping Design Algorithm

The algorithm for our iterative design process is indepen-
dent of the kind of modular robot adopted as the fundamental
building block. For further details, the reader is referred to
[2]. The following variables are used: m(i), the modules used
for the modular gripper at the i-th iteration (excluding base
modules); M, the maximum number of modules per finger of
the modular device; M,in, Miyax, the lower-bound and upper-
bound values of M; R, the radius of the minimum volume
sphere that envelops the object to grasp; L, the length of one
module; f, the total number of fingers; f,,;, (i), the minimum
number of fingers needed in the device at the i-th iteration;
x; € N, the number of modules of the j-th finger; w, the
weight of a finger; T4y, the torque needed to overcome the
moment due to the weight of the completely outstretched
finger. M is computed at the beginning of the algorithm based
on the features of the module and the object to grasp. The
lower-bound, M,,;,, is calculated as follows:

R
Myin = ’VL-‘ . (1)

Min takes the size of the object into consideration. In this
preliminary study, this information is considered known in
advance. The upper-bound, M,,,,, is calculated based on the
worst-case scenario, a completely outstretched finger. In this
situation, the maximum torque, T4y, of the module closest
to the finger base, must overcome the moment due to the
weight of the whole finger:

LMw
Tmax > T

2)

27,
= Mpua = \‘ maxJ .

Lw

M is chosen as a trade-off between M,,;, and M,,,, in the ini-
tialisation phase of the algorithm and the finger configuration
can be denoted as {xi,x2,...,x7}.

The goal of this algorithm is to obtain the most efficient
configuration for a desired performance in terms of grasp
quality with the minimum number of modules. Therefore,
the resulting generated models do not necessarily show a
human-like configuration. For simple objects or tasks, rela-
tively simple manipulators may be sufficient to achieve the
desired grasp. An evaluation of the grasp quality is therefore
required. Grasp quality indices are known in related literature
[9]. The quality criteria introduced by Ferrari and Canny
[10] were used in our preliminary study and is also used
in this work. However, other solutions can be implemented
while maintaining the algorithm’s structure. As a quality
index, Ferrari and Canny considered the radius of the largest
inscribed sphere centred at the origin and bound in the so-
called Grasp Wrench Space (GWS). The GWS is the set of

START Initia_lise
algorithm
v

| Addmoduie |

no v

Generate base
configurations

v

| Compute fmin |

no v

Generate finger
configurations

y

Launch grasp
planner

Y

Qbest >
Qdesired

All base
conf. tried

yes

All finger
conf. tried

yes

Fig. 2: The flowchart of the proposed efficient design method
for modular grasping hands.

all wrenches capable of being resisted by a grasp when unit
contact forces are applied at the contact points. It is given
by the convex hull of the elementary wrenches:

GWS = ConvexHull (U,’»‘ZO{WM, .. .,wi7k}) , 3)

where n is the number of contact points and k is the number
of faces of the friction cone. The measure of the radius of
the largest inscribed sphere centered at the origin that is
contained in the GWS can be also seen as the magnitude of
the largest worst-case disturbance wrench that can be resisted
by a grasp with a unit strength grip. It will hereafter be
denoted as Q, while the desired grasp quality will be denoted
as Qdesired‘

The flowchart of the proposed algorithm is shown in
Fig. 2. The main iterative loop starts with the simplest
modular configuration which consists of one finger with one
module and one base plate. With each iteration, an additional
module is added to increase the possible DOF. The number
of modules for each finger is then set by selecting one among
all the possible gripper configurations that can be obtained
considering m(i) modules. Consequently, a configuration for
the modular base of the device is selected, depending on
the number of fingers, among the set of all the predefined
base configurations. Once a configuration is generated, a
grasp planner is used to find the best grasp achievable. If
the corresponding grasp quality is less than Qg and all
the possible finger configurations and base configurations
achievable with m(i) modules have been tested, a new itera-
tion begins and one more module is added. In the following,
the key steps of the algorithm are described.

Initialise algorithm: the shape and size of the target
object are set. The values of M and Qg.sireq are assigned,
m(0) and f,;,(0) are initialised as m(0) = f,,;,(0) = 1.

Generate base configurations: the set of all possible
base configurations (linear base, circular base, opposable-
fingers base) is defined. Other base configurations could also
be considered by simply adding those in the predefined set.

Compute fnin: at each iteration a module is added, so
m(i) =m(i— 1)+ 1. The value of f,;, has to be updated to
avoid the case of more than M modules per finger, so it can
be defined as follows:

Jmin(i) = { “4)

m(i)
o).

Generate finger configurations: a new gripper config-
uration is generated. The algorithm does not generate all
the configurations at the same time. Each configuration is
tested and a new one is generated only if Qpesr < Quesired-
Otherwise the algorithm returns the current version. This
approach avoids testing unnecessary configurations.

Launch grasp planner: a grasp planner is used to de-
termine the grasp quality achievable with each configuration
for the given object. A grasp is simulated by setting an
initial base position (pose) and initial joint angles (pre-shape)
to the manipulator device. For each gripper configuration,
fifty poses and pre-shapes are tested. This number is a
parameter that can be manually set by the designer. A larger
number of predefined poses and pre-shapes will result in
more computation during the grasp planning phase. For each
pose, the approach phase is realised by moving the device
along the normal to the palm plane until it hits the target
object. The fingers of the gripper then close around the object
until they can not close any more. The contacts between the
device and the object are extracted and the grasp quality
index is calculated. By the end of this step, the best grasp
that can be obtained with the current configuration is returned
together with the corresponding initial base position.

Stop condition: The algorithm stops when the desired
grasp quality is reached. The current modular configuration
is efficient in the sense that it allows for reaching the desired
grasp quality.

C. Overview of OpenMRH

Even though the effectiveness of the summarised design
algorithm was proved in [2], the highlighted steps shown
in Fig. 2 were manually performed by the designer. The
manual process of generating different modular configura-
tions required a significant effort for the designer in terms
of time. To overcome this challenge, OpenMRH, a plugin for
OpenRAVE is presented that allows for a fast and automated
generation of different modular hand models according to
the previously proposed iterative design algorithm.

OpenRAVE uses the Extensible Markup Language (XML)
[11] to store all robot and scene descriptions. The main
modelling features and syntax guidelines are summarised in
the following. For further details, the reader is referred to
[3]. The XML format allows for file linking via inclusion,
thus allowing the use of previously created objects or robots
in the environment. A robot manipulator can be defined
as a kinematic chain of its joint hierarchy when using the

OpenMRH
|
| |
I
|| OpenMBH GuI —| XMLModel L o enravE
! Generator !
! A 1
| : ______ - /_/__ = # _____ -1
user-defined =7/ | algorithmic
input |, | defined input
parameters ,’/Il parameters
@ 240
pl /II
]
! Modular Grasping
1 Design Algorithm
]

Fig. 3: The system architecture of OpenMRH.

XML format. The optional gripper joint values can also be
included, even though they are not used in inverse kinematics
calculations and are only needed for grasping purposes.
Chains for heads and legs, for example, do not need joint
values. A new frame of reference with respect to the end-
effector link is defined by the manipulator to perform all
inverse kinematics calculations. Moreover, it is possible to
include a “direction” tag to specify the axis for the line-of-
sight or for approaching objects. By using different XML
tags, several interface types can be defined as follows:

o the Environment tag can be used to specify multiple
robots and objects. Some GUI properties such as the
camera’s start location and background colour can also
be defined with this tag. The Environment tag permits
the creation of any OpenRAVE interface. Each interface
has a type attribute to be used in specifying the interface
type and defining custom XML readers;

« the KinBody tag can be used to define the basic object
from which all other objects are derived. A collection of
rigid bodies and connective joints make up a kinematic
body;

o the Robot tag is a basic robot interface derived from
the KinBody tag. Usually a Robot tag has at least one
KinBody declaration inside it. A list of Manipulator
and AttachedSensor objects can also be included within
a Robot tag, to describe the robot’s manipulation and
sensing capabilities.

Even though this XML-based interface is quite flexible
and intuitive, OpenRAVE does not provide any tools for
an automated generation of robotic models. To overcome
this issue and to improve our previously proposed design
algorithm, we propose OpenMRH. The system architecture
of OpenMRH is shown in Fig. 3. The proposed plugin
essentially consists of two main components: the OpenMRH
GUI and the XML Model Generator, which is the core of the
system. It should be noted that the XML Model Generator
can be launched not only through the proposed OpenMRH
GUI with a user-defined input but also programmatically.
This second possibility makes the integration with our pre-

viously proposed design algorithm possible. Referring to
Fig. 3, the user-defined input and the algorithmic defined
input approaches are labelled with the number 1 and 2,
respectively.

OpenMRH is written in Java, thus making cross-platform
support possible. In the following, the two key components
are presented.

1) OpenMRH GUI: a configuration GUI is provided with
OpenMRH, which allows user-defined input parameters. This
interface guides the user through all the steps that are
necessary to configure the modular robotic hand model to
be simulated. The user can specify the following input
parameters:

« the fundamental building module to be adopted. Specif-
ically, the standard Open Inventor file format [12] is
adopted to load the 3D models;

o the number of DOF;

« the base configuration. Three possible base configu-
rations (linear base, circular base, opposable-fingers
base) are considered according to the previously pro-
posed generalised model;

« the distance between fingers. A discrete set of prede-
fined lengths is considered;

« the finger configuration.

The configuration GUI is designed for users who are not
necessarily familiar with the OpenRAVE simulation software.
OpenMRH only requires very little knowledge about robotic
grasping principle. This makes the model generation process
easy from the user point of view. Once all the input param-
eters are set, the XML Model Generator starts the model
generation process.

2) XML Model Generator: The core of OpenMRH con-
sists of an XML Model Generator. This component makes
it possible to automatically generate all the necessary XML
files. The XML model generation process is shown in Fig. 4.
Once the model properties are defined with either a user-
defined input or programmatically, the XML Model Gen-
erator initialises the process of creating the corresponding
XML document. The creation of the XML document is
implemented in Java by using the XML Document Ob-
ject Model (DOM) parser [13]. The XML DOM defines a
standard for accessing and manipulating XML documents.
The underlying idea is very simple. A DOM object with
the desired tree structure is created, then the DOM object
is written into a stream, in our case an XML file. The
obtained XML file is is consistent with the standard syntax
expected by OpenRAVE for the simulated models. In this
way, once the model is generated, an instance of OpenRAVE
can be launched and the model can be visualised within
the selected simulation environment. The generated models
can be used for testing, developing and deploying grasp or
motion planning algorithms.

IV. CASE STUDIES

Two case studies are presented in this section to validate
the efficiency of the proposed model generator. A modular
hand model with 9 DOF is first generated with OpenMRH

I I
'Modular hand || XML Model 1 ! Output !

| \ | |
! Model b Generator ! ! :
| | ! | |
| | KinBody | ! i [DOM | ! - !
\ ! i parser to !
| 1 ! | | 1
: Robot \ E ' | OpenRave model |
| | | | |
S S S S

Fig. 4: The XML model generation process.

Fig. 5: The OpenMRH GUI and the user-defined input
parameters adopted in the first case study.

by using a user-defined input. The hand consists of a 3 DOF
thumb, which opposes the other two fingers, each having 3
DOF. The distance between fingers is equal to one discrete
unit and the finger configuration can be described as {3,3,3}.
The adopted input parameters for the OpenMRH GUI are
shown in Fig. 5. The resulting generated model is shown in
Fig. 6-a, while Fig. 6-b shows the same model grasping a
glass.

Successively, a modular robotic hand is generated with
OpenMRH by using algorithmic defined input parameters.
Specifically, our design algorithm is used to find an efficient
modular configuration to grasp a ketchup bottle. The maxi-
mum number of modules per finger M is set to 3. According
to the experimental results presented in [14], the quality
threshold Qeyireq 18 set to 0.1 since this or a greater measure
of quality corresponds to grasps that a human would consider
stable. In Fig. 7, the resulting algorithm iterations and the
corresponding required time of this experiment are shown.
The first modular configuration able to reach the desired
grasp quality is shown in Fig. 7-g.

V. CONCLUSION AND FUTURE WORK

This paper, OpenMRH, an open-source plugin for Open-
RAVE was presented that allows for a fast and automated
generation of different modular hand models. The models
can be generated either from a user-defined input by using
the OpenMRH GUI or programmatically by adopting our
previously presented design algorithm. The generality of the

(2) (b)

Fig. 6: (a) a model generated with OpenMRH by using user-
defined input parameters, (b) the same model grasping a
glass.

proposed plugin makes it possible to use OpenMRH for
many other educational and research purposes. In this sense,
OpenMRH represents a useful extension for the OpenRAVE
simulation environment. This extension opens up to a vari-
ety of possible application scenarios, making it feasible to
develop alternative design approaches and control methods
for modular robotic hands. The virtual-prototyping approach
can easily be combined with the modular concept.

In the future, a possible improvement to OpenMRH could
consist of adding the ability to also generate the manipulator
environment so that multiple objects and robots can be
added according to current needs. Another possible future
work could consider the integration of the presented system
with ModGrasp [15]-[17], an open-source virtual and phys-
ical rapid-prototyping framework developed by our research
group. This integration would allow for testing different
control algorithms. The possibility of exploring precision
grasping approaches may be also considered by developing
different quality indices and planners. The challenge of
adapting the proposed method to a multi-objective optimi-
sation problem may be studied. Finally, some effort should
be put into the standardisation of OpenMRH to make it
even more reliable for both the industrial and the academic
practice. It is the opinion of the authors that the key to
maximising the long-term, macroeconomic benefits for the
robotics industry and for academic robotics research relies
on the closely integrated development of open content, open
standards and open source.

REFERENCES

[1] K. Gilpin and D. Rus, “Modular robot systems,” IEEE Robotics &
Automation Magazine, vol. 17, no. 3, pp. 38-55, 2010.

[2] F. Sanfilippo, G. Salvietti, H. Zhang, H. P. Hildre, and D. Prattichizzo,
“Efficient modular grasping: an iterative approach,” in Proc. of the 4th
IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), Rome, Italy, 2012, pp. 1281-1286.

[3] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in Proc. of the IEEE International Conference on Robotics

(a) 21s (b) 38s (c) 49s (d) 27s

(e) 34s (f) 37s (g) 47s

Fig. 7: From (a) to (g), the necessary algorithm iterations to
find an efficient modular configuration to grasp a ketchup
bottle. The first modular configuration able to reach the
desired grasp quality is shown in (g).

and Automation (ICRA), workshop on open source software, vol. 3,
no. 3.2, 2009, p. 5.

[5] D. Krupke, G. Li, J. Zhang, H. Zhang, and H. P. Hildre, “Flexible
modular robotic simulation environment for research and education.”
in Proc. of the 26th European Conference on Modelling and Simulation
(ECMS), Koblenz, Germany, 2012, pp. 243-249.

[6] J. Gonzalez-Gomez, A. Ranganath, and D. Estevez. (2010, January)
OpenMR: Modular Robots plug-in for OpenRAVE. Last access on
Sept. 2015. [Online]. Available: https://github.com/Obijuan/openmr.

[7] J. Gonzalez-Gomez, H. Zhang, E. Boemo, and J. Zhang, “Locomo-
tion capabilities of a modular robot with eight pitch-yaw-connecting
modules,” in Proceeding of CLAWAR. Citeseer, 2006, pp. 12-14.

[8] M. Cutkosky, “On grasp choice, grasp models, and the design of
hands for manufacturing tasks,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 3, pp. 269-279, 1989.

[9] D. Prattichizzo and J. Trinkle, “Grasping,” in Handbook on Robotics,
S. B. and K. O., Eds. Springer, 2008, pp. 671-700.

[10] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
1992, pp. 2290-2295.

[11] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau, “Extensible markup language (xml),” World
Wide Web Consortium Recommendation REC-xml-19980210.

http://www.w3.0rg/TR/1998/REC-xml-19980210, p. 16, 1998.

[12] P. S. Strauss and R. Carey, “An object-oriented 3D graphics toolkit,”
in ACM SIGGRAPH Computer Graphics, vol. 26, no. 2, 1992, pp.
341-349.

[13] W3Schools. (2015, January) XML DOM Tutorial. Last access on
Sept. 2015. [Online]. Available: http://www.w3schools.com/dom/.

[14] C. Goldfeder, P. Allen, C. Lackner, and R. Pelossof, “Grasp planning
via decomposition trees,” in Proc. of the IEEE International Confer-
ence on Robotics and Automation (ICRA). Citeseer, 2007, pp. 10-14.

[15] F. Sanfilippo, H. Zhang, K. Y. Pettersen, G. Salvietti, and D. Prat-
tichizzo, “ModGrasp: an open-source rapid-prototyping framework for
designing low-cost sensorised modular hands,” in Proc. of the 5th
IEEE RAS & EMBS International Conference on Biomedical Robotics
and Biomechatronics (BioRob), Sdo Paulo, Brazil, 2014, pp. 951-957.

[16] FE. Sanfilippo, H. Zhang, and K. Y. Pettersen, “The new architecture of
ModGrasp for mind-controlled low-cost sensorised modular hands,”
in Proc. of the 2015 IEEE International Conference on Industrial
Technology (ICIT2015), Seville, Spain, 2015, pp. 524-529.

[17] F. Sanfilippo, “Alternative and flexible control approaches for robotic
manipulators: on the challenge of developing a flexible control ar-
chitecture that allows for controlling different manipulators,” Ph.D.
dissertation, Norwegian University of Science and Technology, Faculty
of Information Technology, Mathematics and Electrical Engineering,
Department of Engineering Cybernetics, Trondheim, June 2015.

